

Printed Circuit Board manufacturing

PCB (Printed Circuit Board), NYÁK PWB (Printed Wiring Board), NYHL

Wire network + mechanical support + base of assembly

Benefits:

- Higher load, better dissipation, better surface/cross section ratio
- Automatic assembly, control, and rework
- Better reliability

PCB types

- Laminates (substrates): rigid flex
- Number of layers:
 - Single layer
 - · Double layers, through-hole plated,
 - Multilayer (2 20 + layers)

• Feature size: width of conductiv and insulating stripes

- normal: 0,4 0,6 mm >16mil
- Fine : 0,3 0,4 mm ~12 16 mil
- Very fine: 0,1 0,2 mm ~ 4 8 mil

(1 raster = 2,54mm, 1 mil = 0,01raster)

Subtraktiv, additiv, semi-additiv

3

Main steps of manufacturing

- Materials selection (laminate, copper foil)
- Mechanical forming (drilling, cutting)
- Making hole conductive
- Galvanic plating
- Patterning
 - Photolithography, screen printing
 - Etching
- Solder mask
- Surface finishing: metal plating (galvanic, immersion and electroless)

Laminate materials and types

FR series (flame retardant)

- FR-2: paper reinforced phenolic
 - Dark yellow, stable size
- FR-3: paper reinforced epoxy
 - Light beige, good electrical properties, suitable for hole plating
- FR-4: wowen glass reinforced epoxi
 - Transparent yellwish-green, good machinable, plateable, minimal water absorption
- FR-5: similar to FR-4, better heat resistance, higher T_q
- CEM 1: paper and glass reinforced epoxy: cheaper
- CEM 3: wowen and non-wowen glass reinforced epoxy

Properties	FR-3	FR-4	FR-5
R _{bulk} , Ωcm (40°C)	4 10 ¹²	8.1014	8.1014
R _□ , Ω (40° <i>C</i>)	4 10 ¹²	3 1012	3 10 ¹⁵
ε _{rel} , (1 MHz)	4,9	4,7	4,6
tgδ (1 MHz) (GHz)	0,04	0,02	0,015
Tolerance of the solder baath (sec)	25	>120	>120
Water absorption (mg)	na	15	na
Tg, glass transition temperature		150	>165
Thermal expansion coefficient (z axis %) 25-275°C		5.5	6

Copper foil

- Thickness: 17,5μm, <u>35μm</u>, (70μm, 105μm)
 - Semi-additiv: 5µm Cu + protectiv coating
 - special (eg. Car electronic 400 μm)
- Manufacturing: galvanoplastic
 - Electroplating to a rotate steel cilinder, detach after half round
- Mounting:
 - Adhesiv foil or a dissolved thermosetting resin

Preparations of the laminates

- •Cutting
- ·Drilling
- Degreasing
- •Micro-etching and dissolve the oxid layer

Mechanical processes

- Cutting: usual panel size is 500 800mm Free border (tooling rail) Back end: routing
- Drilling: single side: end of line, not critical

Double side, multilayer: key process, one of the first steps. Need a smooth inner surface for metallization

Aspect ratio: hole length/hole diameter: less than 7 - 10

Drill tools

- Material: Tungsten-carbide
- (Slope): 30 40°
- (Top angle): ~140°
- Speed (rev): 10-90000/min smaller diameter, higher speed
- Min. d =0,2 0,15 mm

Suface cleaning

- Mechanical: abrasive cylinder, pumice, (wet)
- Degreasing: goal is the uniform adhesion of the new coatings (photoresists, masks, metals)
 - Water base materials:
 - Alkaline: NaOH, Na₂CO₃, Na₃PO₄
 - Detegents, surfactans

Dip or spray methods

11

Removing oxide layer

- Oxidized surface contains: Cu_2O_1 , $Cu(OH)_2$ ·CuCO₃,
- Decrease adhesion of the new films eg. photoresist, metal
- Usually acid solvents: sulfuric or hydrochloride acids (10 - 20 % w/w)
- Curing time: 0,5 1 min at room temperature

Printed Circuit Imaging

Photomask Photolithography Sreen printing

Realization of drawing Main steps of the phtolithography

Photomask preparation

Its role: transfer the pattern

- Master artwork: the first, original drawing, the copies are the technological photos
- Manual methods: tint drawing, peelable patterns (chartpack, alfaset) → contact photo
- Computer aided methods: Circuit design programs PCB design programs:
 include: artworks (all layers), holes, soldermasks, final control (test) driver software

;x;y coordinates Light on/off Gerber file: * aperture size

- Laser photoplotter
- Matrix printer system
- ·Plotter system
- •Very high resolution 8-10-16000 dpi

Masking methods

Goal: protect certain areas of the surface agains some physical or chemical attact

- In contact masks
- Out of contact, eg: screen mask

Masking methods 1. Photolithography

- Photoresist, photoimaigeable materials
- polimer layer
- Usable in PCB, hybrid IC and semiconductor industry
- Resolution, ~ minimal line width \rightarrow 20 nm
- types:
 - positive

- negative
- liquid solid (film)

Photochemical background

- The absorbed photon give the energy quantum to the reaction (bonding or activation energy).
- W = hc/ $\lambda \Rightarrow$ to the successful reaction need a given energy (λ is lower than a given value).

h: Planck konstant c: speed of light λ: wavelenght

Types of photoresists

Positive: Depolimerisation caused by exposition, the molecular weight decreased, the solubility increased.

Negative: polimerisation, cross-linked bonds formation influence of light. The photoresist get nearly insoluble.

Liquid Solid

Positive resists

Negative resists

- Sensitive for UV, but hardly for visible light
- Exposition: UV
- Developer: diluted
 NaOH (5 7 g/l)
- Stripper: organic solvent
- · Avoid overdeveloping

- Sensitive for light under 540 nm (yellow light needs in the workplace!)
- Exposition: UV
- Developer: weak alkaline solvent (1 - 2% Na₂CO₃)
- Stripper: stronger alkaline solvent (5% NaOH)
- Not sensitive to overdeveloping

21

Solid resists

- "+" , "-" the negative is more frequently used
- Thicker \rightarrow important at the galvanisation
- Fewer manufacturing steps
- Uniform layer thickness

Manufacturing steps (liquid resists)

- 1. Clear, degreased surface
- 2. Coating methods:
 - Spin coating (d ~ v_k ~ r)
 - Screen printing
 - Liquid carpet
- 3. Drying 60...80°C
 - The solvent is volatilized
 - Film formation

Manufacturing steps 2

4. Exposition

- Emulsion side stacked to the resist
- UV high-pressure Hg-vapor lamp (365nm)
- distance, time can calculate, then experimental adjusting (dose. μjoule/cm²)
- 5. Developing
 - There is a difference only in solubility, not soluble and insoluble areas
 - The developer is spayed on the surface usually
- 6. Burning (positive only)
- 7. Etching or electroplating

Manufacturing steps 3 - solid resists

- Du Pont Riston film
- Laminating 100°C, (panel is preheated), surface is roughed
- Exposition: booth side
 together, precise positioning
- Develop:
 - Remove mylar film,
 - Developer is a weak alkaline solution (1 2%-os Na₂CO₃),
 - Spraying, need a mechanical impact

Exposition methods

- Contact Imaging
- Laser Projection Imaging, LPI
- Laser Direct Imaging, LDI
- Step and Repeat Imaging

Contact Imaging

- Current, trouble-free processes,
- Cheap instruments,
- Good productivity,
- · Low yield,
- Manual positioning is inaccurate,
- Low resoution (~100 μm),
- Mask wearing,
- Granular waste, dust causes troubles

Laser projection system

29

Laser direct imaging

Masking methods 2.

Screen printing

Applications:

Medim or large volume production

Medium feature size •Eatch-resist mask

Solder paste

·Legend

•Uniform layers for photoimigeable liquids (solder mask)

Parts of the screen

Metal stencil

- Steel film, apertures cut by:
 - Laser
 - (Electrochemical) etching
 - Plasma etching
 - Galvanoplastic
- Benefits:
 - More precise,
 - Better resolution (127 65 μ m fine pitch IC-s)
 - Longer lifespan
 (50 100 000 prints)
 - Good hardness and wear resistant

Suitable for solder paste printing

Printing

 Table: fixing, positioning, quick change of panels
 Squeegee:

> sharp, chemically proof, wearproof

- Squeegee angle: 45 - 60°, printing speed: medium slow

- Goal: removig copper from the uncovered areas.
- Etchant:
 - Oxidativ: $Cu \rightarrow C$
 - acid/alkaline pH:

 $Cu \rightarrow Cu^{2+} + 2e^{-}$ keep Cu^{2+} solved
Etchant types:

 Acid: sulfuric:

chlorides:

• Alkalic:

Sulfuric acid - hydrogenperoxide H₂SO₄ ammonium-persulphate (NH₄)₂S₂O₈ ferric chloride FeCl₃ Copper(II)-chloride cuCl₂ Copper-tetrammin complex [Cu(NH₄)₄]²⁺

Etchant properties

- Rate of etching (μ m/min)
 - Depends on the temperature and the solvent concentration
- Capacity (m²PCB/kg etchant)
- Undercut, etch factor: (v $_{\perp}/v_{||}$)

- Selectivity (Sn mask on double layer PCB)
- Methode of regeneration
- · Environmental and health impact

Etching methods

- Dipping
- Spray
- Jet stream
 - Always fresh etchant on the surface
 - Dissolved copper washed by heavy flow
 - Possibility of continuous regeneration (Copper recovery, redox potential and pH correction)
- Rinse
 - Minimal dropping out (air knife, rubber cylinder)
 - The first rinse water is dangerous waste
 - Cascade rinsing

PCB manufacturing 2

Metal layer preparation methods Double side and multilayer PCB-s High Density Interconnections

Making metal layers

Reduction: $Me^+ + e^- \rightarrow Me$

Electroless plating (Chemical reduction):

- Suitable on insulating surfaces
- Application: hole metallization,
 - resistors,
 - Surface finishing
- Used materials: Cu, Ni, Ag

Immersion plating:

Conductive surface, ion exchange reaction (The less active metal come out to the surface, more active go to the solution) Used materials: Ag, Au

Galvanic plating To the conductive surface only

 Application: Panel, drawing, connectors

Electroless plating Processes:

- Surface peparation:
 - Clearing, degreasing
 - Microetching
 - Activation: first SnCl₂ then Pd
- Chemical reaction:

 $CuSO_4 + 2HCHO + 4NaOH \rightarrow Cu + 2(HCO)_2Na + H_2 + 2H_2O + Na_2SO_4$

- At room temperature
- Layer thickness: 1-2µm, the surface turns conductiv, the plating continued by galvanic vay

Making hole conductive

- Electroless copper: (previous)
- Direct plating: base: thin Pd, then galvanic copper
- Black hole: grafit
 suspension → galvanic
 Cu
- Conductive polymer: polymer layer oxidation, turn conductive → galvanic Cu

Copper galvanic plating applications

- Hole metallization (panel, drawing)
- Intermediate layer (improve adhesion, diffusion barrier)
- Acid bath: CuSO₄ + H₂SO₄ + NaCl + additives
- $j = 0.5...5A/dm^2$, agitations of cathode,
- anode: phosphorus dopant copper

Other metallisation processes

Immersion plating

- Gold, silver
- Improve wettability of the surface for soldering
- Ion exchange:

 eg: ENIG (electroless nickel, immersion gold) Ni + Au²⁺ → Ni²⁺ + Au ~0,1 µm, self stop reaction

Sumary of the double side PCB technology

Illustration DS-2. Drill. Hole sizes and location are determined by drill data furnished by customer.

36 MANUFACTURING PCBs

Illustration DS-3. Electroless copper plate. A thin layer of copper is deposited on all surfaces including the walls of the drilled holes.

• Drilling

- Activation Sn \rightarrow Pd electroless Cu galvanic Cu panel-plating ~5 μm
- Solid photoresist lamiation Photolithography – negative mask
- Galvanic Cu \rightarrow 20 μm

R

Illustration DS-7. Strip plating resist. Plating resist is chemically removed, revealing the surface copper.

Illustration DS-8. Etch. The unwanted copper is removed chemically by an etchant that attacks copper but not tin or tin/lead.

• Galvanic Sn (~10μm)

• Stripping

Selectiv etching

Illustration DS-11. Solder coat. Solder (tin/lead) is applied to the exposed copper, and the excess solder is removed.

Removing Sn layer

Soldermask

Surface finishing (Au, Ag, Sn, OSP)

Multilayer PCB

pre-preg

Cu wireing without Sn (black or brown oxide)

Pre-preg: preimpregnated material, half-hardened, glass-textile reinforced epoxi (the same material as the substrate)

Co-laminated methode

- Inner layers: Double side boards, Cu thickness 35 μ m. The artwork prepared one by one, without holes
- Thin copper-oxide layer, to improve adhesion
- Top and bottom layer: plain Cu folie
- Packet: precise positioning with the help of studs (sticks).
- Hot pressing: 170°C, 15bar, 40-60 min
- Drilling, hole plating, photolitography ... like at the double side PCB
- Mainly through holes

- <u>http://www.pcb007.com/pages/</u> <u>pcb007.cgi</u>
- http://www.hdihandbook.com/
- <u>http://flexiblecircuittechnology</u> .com/flex4/

Blind and buried vias:

Difficult to make in this methode. Prepared in the single inner boards.

X-ray image of plated through holes

émezett falú vakfurat eltemetett fémezett falú furat Cu huzalozási pálya

Quality control

- Systemahic control during the production
 - Control of tools: Drill bits, chemicals, baths, electrodes
 - Control of intermediates and products
 - Main methodes:
 - Visual
 - AOI: Automatical Optical Inspection
 - Test automats

HDI: High Density

Interconnection

- Line width $< 150 \mu m$
- Microvias (buried, blind) d < 0,3 mm, more than 1000 holes/dm²
- Sequential technologie
- Embedded passive components

Sequential technology, microvia

- Sequential: build up layer by layer
- Microvia: 10...100µm diameter, drilling by laser or plasma etching
- Benefits: smaller board, higher speed, less layers, lower price

Plated blind via

Multilayer board, base board and 2 + 2 sequential layers

Microvia drilling

- Mechanical: reduced accuracy: z axis: ~ 40 μm, side: ~ 50 μm
- Plasma
- Laser
 - CO₂ laser 10,6µm
 (not for metals)
 - UV laser
 - d ~ 30 µm

Rigid - flex

Embedded passive parts

Traditional SMT

Embedded passive

Longer wireing

Shorter wireing Reduced size

Embedded capacitor by substitution of dielectric layer

Benefits

- Electrical parameters:
 - Better impedance
 - Shorter signal way, smaller serial inductivity,
 - Minimalize the inductance of the SM parts
 - Reduce cross talking, noise and EMI
- PCB design:
 - Improve density of active elements
 - Less vias, easier wiring
 - Less soldered connections, better reliability
- Economic:
 - Less passive components
 - Improve efficiency of assembly processes
 - Smaller panel size

Barriers

- Only the smaller values of capacitance, resistance and inductance can produce
- The material cost is high
- The manufacturing and the design are more complex

Embeded resistors

- Thin film resistors
- Galvanic plated

Thick film resistors Screen printed

Resistor design (parameters and patterns)

 $R = R_S \times N$

where N is the number of squares (N = L/W)

Embedded capacitors

Footprint of a 50 nF capacitor, used different dielectric materials.

3 D packaging

