

Um O.F.V.
Mecânico, sem
Microfonia
e sem Folga
nos Mancais.

O MAUSOLEU

EMÍLIO ALVES VELHO *

(Especial para ELETRÔNICA POPULAR)

QUANDO eu era criança, minha avó materna contava histórias que começavam assim: "No tempo em que os bichos falavam"... Hoje vou lhes contar uma que começava assim: "No tempo em que se usava capacitor variável e mostrador nos O.F.V."...

Nesse tempo havia microfonia, saltos de freqüência, e zonas mortas em torno do "Beat". E como era duro copiar uma transmissão em SSB! Hoje, com a técnica que vamos propor aos nossos leitores, essas coisas passam a pertencer a um passado remoto.

Relutamos em publicá-lo, mas não pudemos resistir ao nosso acirrado espírito de vaidade e exibicionismo. Relutamos, pois o Mausoléu requer construção mecânica ao invés do habitual "compra, atarracha e solda".

É TEMPO DE CONSTRUIR

É preciso cortar, serrar, furar, tornear, fazer roscas, soldar e pintar. É tempo de vol-

tar àquele sadio amadorismo do passado, quando o caboclo entrava no mato e cortava o bambu para fazer a forma da bobina; em termos atuais, podemos serrar o tubo de PVC. Para isso, basta apenas "sacudir do lombo" essa preguiça mental que eleva o valor de pico do nosso gráfico abdominal. Acabemos com essa mania de deixar tudo a cargo da nossa padroeira: a Santa Ifigênia.

Nas fotografias e no desenho da Fig. 1 podemos ver todas as peças utilizadas por nós. Ninguém é obrigado a construir um Mausoléu exatamente igual ao nosso, nem utilizar as mesmas peças; basta seguir o princípio de construção, respeitando apenas as grandezas dimensionais determinadoras da freqüência. Temos certeza absoluta de que a habilidade e o gênio inventivo dos nossos aguerridos PY nos revelarão montagens quiçá

^(*) Chefe do Laboratório de Eletrônica da SOFUNGE, SP.

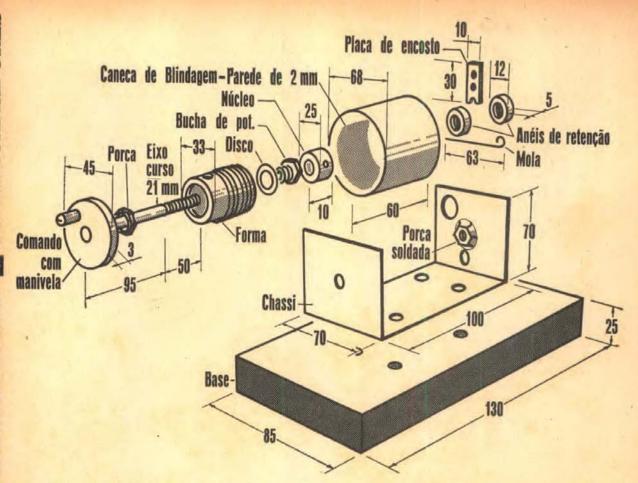


FIG. 1 — Elementos mecânicos que compõem o Mausoléu.

superiores à nossa; como orientação geral, descreveremos as peças que utilizamos.

CAIXA E TAMPA

Foram aproveitadas de uma velha chave de reversão para motores trifásicos; na parte frontal tem um furo passante de $\phi = 34,92$ mm (%"), através do qual foi fixada uma bucha de potenciômetro que segura a bobina e serve de mancal livre para o eixo de sintonia; na parte traseira tem um furo passante de $\phi = 6,35 \,\mathrm{mm}$ (1/4") corretamente alinhado com o furo frontal. No lado interno da parte traseira foi soldada uma porca de latão com rosca de 6,35 mm (1/4"), com um passo de 32 fios a cada 25,4 mm (1"); essa porca proporciona o avanço longitudinal do eixo de sintonia, cuja parte traseira também é rosqueada.

Com esse passo de rosca, o avanço do eixo fica bastante preciso (bom ajuste fino), dispondo de 20 voltas para cobrir a faixa de 3,5 a 3,8 MHz, ao invés das clássicas 4 voltas dos mostradores normais existentes na praça.

Pelo lado externo da parte traseira da caixa há uma mola reta de arame de aço fazendo pressão sobre a ponta livre do eixo. mantendo-o sempre encostado no leito rosqueado da porca; dessa forma não há folgas laterais nem axiais no mecanismo de sintonia.

EIXO DE SINTONIA

Foi construído de aco prata retificado de 6,35 mm (1/4"), com as dimensões do desenho correspondente, e poderá ser usinado de qualquer tipo de aco disponível, mas nunca de latão ou bronze.

LIMITADORES DE CURSO

São dois anéis de latão posicionados sobre a parte rosqueada do eixo, sendo um pelo lado interno e outro pelo lado externo da parte traseira da caixa. Cada anel possui dois parafusos ponteagudos de aço temperado, colocados a 90 graus entre si; esses parafusos quando forem apertados, produzirão mossas na rosca do eixo e por isso só devem ser colocados e apertados ao final da montagem, seguindo as instruções que daremos.

PLACA DE ENCOSTO

Essa placa, de chapa de latão com espessura de 2 mm, tem a finalidade de impedir que o limitador externo de curso fique 'mordendo" a mola de encosto.

COMANDO COM MANIVELA

Como botão utilizamos uma engrenagem de sucata com um flange de 6,35 mm (1/4"). A manivela foi improvisada por meio de um parafuso de 3,175 mm (1/8") e um tubinho de metal.

NÚCLEO

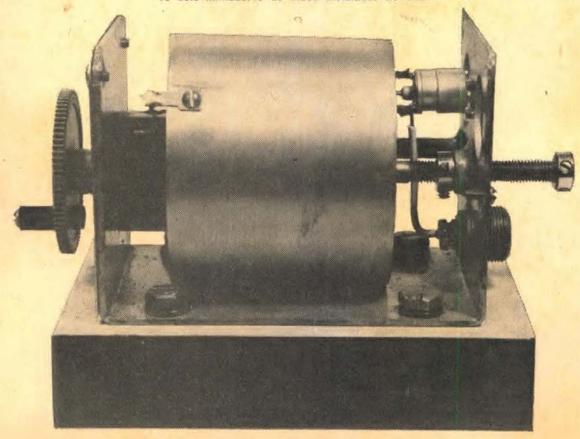
O núcleo de sintonia pode ser de latão, que é o material mais acessível. Fizemos experiências com vários metais e ligas, não ferrosos e viáveis, tais como cobre, latão e bronze (em seu estado natural ou com banho de prata ou cromo) e também alumínio puro, sem encontrarmos nenhuma diferença entre eles. Esse núcleo será fixado ao eixo de sintonia por meio de um parafuso Allen sem cabeça, de 4,76 × 6,35 mm (3/16" × 1/4"), com rosca Whitworth.

BASE

A base de aço assegura o peso necessário à solidez e estabilidade do conjunto. Foi feita em chapa aplainada com 25 mm de espessura, e sua parte inferior é forrada com feltro para não arranhar a mesa, e a superior com fórmica, com finalidades ornamentais.

O CIRCUITO RESSONANTE

Esse circuito é constituído por L1, tendo em paralelo as capacitâncias do compensador ("trimmer") C1, operando a meio curso, a do cabo coaxial e seus conectores, a dos capacitores do divisor de fase, e mais a parasita das válvulas. A frequência de oscilação ou frequência "mãe" vai de 1.725 a 1.925 kHz em 20 voltas do eixo de sintonia.


BOBINA

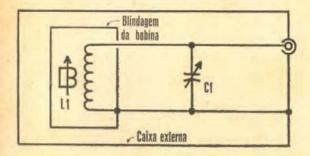
A bobina é enrolada num tubo de desodorante. Dentre as várias marcas disponíveis, há uma variação no diâmetro externo em torno de 32 a 33 mm, alguns apresentando uma ligeira conicidade, mas esses detalhes não chegam a produzir influência significativa.

A fixação das pontas do enrolamento é feita por meio de terminais que poderão ser feitos de palito, fósforo ou pequenos parafusos, mas de maneira que não sobrem para dentro da forma, a fim de não baterem no núcleo rotativo; o fio dará uma ou duas voltas nesses terminais e depois de pronto o enrolamento será imobilizado com esmalte de unhas roubado do "cristal" ou das "cristalinas".

O enrolamento consta de 46 espiras de fio de 0,57 mm (nº 23 AWG) esmaltado, com uma capa de algodão que proporciona um certo afastamento entre espiras e funciona como absorvente do esmalte, proporcionando a colagem entre espiras e entre estas e o corpo da forma. O esmalte não deve ser muito grosso a fim de garantir uma boa penetração, e para isso poderá ser diluído com um pouco de acetona, também fácil de

FOTO 1 — Visão interna do Mausoléu. Notar os dois limitadores de curso instalados no eixo.

se obter nos "fornecedores" acima indicados. Recomendamos esmalte colorido, pois se vê melhor o andamento do serviço e melhora a aparência do conjunto. Se não houver bronca do "fornecedor", podemos aplicar duas ou três "demãos" de pintura, transformando a bobina numa rocha de solidez.


BLINDAGEM

A bobina é envolvida por uma blindagem em forma de um anel inteiriço, formado por um pedaço de tubo de alumínio com diâmetro externo de 68 mm. Sua missão é defender a bobina contra os malefícios da caixa do aparelho, ou seja: a tampa de aço da caixa, quando colocada no lugar, completa uma espira em curto em torno da bobina, reduzindo sua indutância e acrescentando-lhe perdas devido ao seu material (aço). Além disso, o curto-circuito da tampa contra a caixa é instável e mutável, produzindo saltos de frequência a um simples toque da mão. Com a blindagem de alumínio há uma pequena redução fixa da indutância, mas não há acréscimo significativo de perdas devido à baixa resistência do material, mas agora a bobina não "copia" o efeito da caixa de aco.

AÇÃO DO EIXO

Não se impressionem com um eixo de aço maciço atravessando o interior da bobina. Numa bobina de grande diâmetro e com o fator de forma adotado, a distribuição das linhas de força tende a formar um vazio magnético no centro e, devido à gran-

FIG. 2 — Diagrama da caixa fria.

de relação de diâmetros entre enrolamento e eixo, o seu efeito de absorção é ínfimo.

AÇÃO DO NÚCLEO

A variação da freqüência de oscilação é obtida pela variação da indutância da bobina, a qual se processa pela introdução do núcleo constituído pelo cilindro de latão; este age como uma espira em curto, de baixíssima resistência, reduzindo a indutância sem acrescentar perdas.

DADOS ELÉTRICOS

Eletricamente, o Mausoléu é muito semelhante ao O.F.V. Frio, publicado por nós em E-P de julho/agosto de 1972. A sua excelente estabilidade de freqüência é devida em grande parte à sua sólida construção mecânica, que o torna isento de torções, folgas e vibrações. Dispõe de alguns refinamentos em seu circuito, incluindo a utilização de capacitores de mica prateada no divisor de fase.

A CAIXA FRIA

Na Fig. 2, temos o "espantoso e complexo" diagrama elétrico da caixa fria: uma bobina, um compensador ("trimmer") e um conector coaxial fêmea do tipo para microfone. A espira em curto atravessada por uma seta representa o cilindro de latão que avança no interior da bobina.

Na Fig. 3, temos o diagrama do estágio oscilador, o qual deve ser montado no chassi do transmissor da mesma forma e seguindo as mesmas recomendações que foram feitas para o O.F.V. Frio. A conexão entre a caixa fria e o oscilador é feita por meio de um pedaço de cabo coaxial tipo TFS70 (nomenclatura Pirelli).

Esse oscilador utiliza uma válvula 6V6GT ou 6AQ5, ligada em triodo, interligando-se G2 e placa, alimentadas a partir de uma tensão estabilizada de 105 V, através de um conjunto desacoplador constituído por R2 e C5. É uma configuração Clapp em paralelo e seu

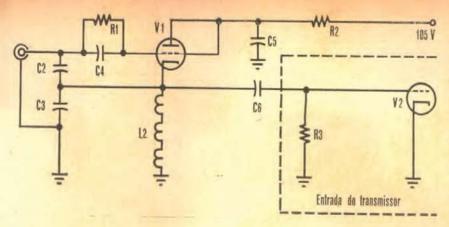


FIG. 3 — Sugestão para o O.F.V.

divisor é constituído por C2, de 500 ou 510 pF e C3, de 100 pF; devemos alertar nossos leitores de que não há erro de imprensa ou "gato", pois, ao contrário do habitual, o capacitor maior fica mesmo para cima e o menor, de 100 pF, fica para o lado do chassi, em paralelo com L2, de 2,5 mH. Esse aparente absurdo será logo explicado.

TOMADA DO SINAL

A saída do sinal para o estágio seguinte é tomada a partir do catodo da osciladora, por meio de C6; R3 é o resistor de polarização de grade do estágio seguinte, que na realidade é o primeiro estágio do transmissor propriamente dito, o qual deverá obrigatoriamente operar como multiplicador de freqüência, proporcionando boa separação entre o oscilador e os estágios seguintes.

Utilizando uma configuração adequada nesse multiplicador, poderemos recolher em sua placa o segundo, terceiro, ou mesmo o quarto harmônico do oscilador, com nível suficiente para excitar uma ou duas válvulas de saída tipo 807 ou 6DQ6, conforme a classe de operação adequada.

Visto que o oscilador cobre de 1.725 a 1.925 kHz, é possível obter na saída do multiplicador as seguintes coberturas: 3.450 a 3.850 kHz, para 80 m; 5.175 a 5.775 kHz, sem aplicação, e 6.900 a 7.700 kHz, para 40 m.

CONDICIONAMENTO

O nosso O.F.V. (constituído pela caixa fria mais o estágio oscilador) foi "bolado" para excitar qualquer transmissor que ofereça uma entrada considerada normal. Mas, o que vem a ser uma entrada "normal"?

Verificando dezenas de diagramas, observamos que o valor predominante para o resistor de grade da primeira válvula é de $47 \, \mathrm{k}\Omega$, e por isso passamos a considerar esse valor como normal para otimização do nosso oscilador.

Essa otimização consiste em obter o máximo de excitação na entrada do transmissor, com o mínimo de consumo na válvula osciladora, o que logicamente exige um adequado casamento de impedâncias. Isso foi obtido pelo correto relacionamento de C2 e C3, do divisor de fase, e essa é a razão de seus valores parecerem invertidos em relação ao habitual.

MONTAGEM MECÂNICA

O anel de blindagem da bobina é fixado na parte inferior da caixa por meio de dois parafusos de 3,175 mm (1/8") com cabeça escareada; a chapa da caixa será escareada pelo lado de fora, a fim de embutir as cabeças dos parafusos. Estes terão um comprimento apenas necessário à fixação de suas porcas, munidas de arruelas dentadas, que ficarão pelo lado interno do anel de blindagem.

A base de açc, forrada de feltro por baixo e de fórmica por cima, possui quatro furos com rosca de 6,35 mm (1/4") para fixação da caixa. A parte inferior desta é fixada na base por meio de quatro parafusos de aço com cabeça sextavada, munidos de anilhas de pressão, os quais são apertados com raiva, até sair caldinho da fórmica.

Instala-se a bobina fixando-a por meio de uma arruela plana e de uma porca de potenciômetro, encostando-a apenas, sem apertar muito. Em seguida, introduz-se o eixo na bucha e verifica-se se ele corre livre na rosca da porca.

Caso isso não aconteça, deve-se verificar o paralelismo das "faces" da caixa em todos os planos, pois podem estar "empenadas". Soltando-se a porca de fixação da bobina, podemos jogar com a folga do furo de fixação para um alinhamento final do eixo, o qual deve correr livremente. Só depois disso é que a porca será apertada em definitivo, deixando para cima o furo de acesso existente na base da bobina.

O botão (engrenagem) com manivela será colocado na ponta lisa do eixo, faceando o lado externo daquele com a ponta deste, e seus parafusos serão apertados em definitivo. Introduz-se o eixo na bucha fron-

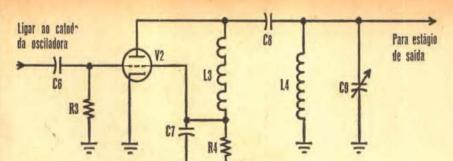


FIG. 4 — Separador proposto pelo Autor.

LISTA DE MATERIAL .

Válvulas

V1. V2 - 6V6GT ou 6AQ5

Resistores

R1 — $47 \text{ k}\Omega$, 1/2 W

R2, R4 - 47 Ω , 1 W

 $R3 - 47 k\Omega$, 1 W

Capacitores

C1, C9 — 30 pF compensador ("trimmer") com núcleo de ar) C2, C4 - 510 pF, mica prateada

C3 - 100 pF, mica prateada

C5, C6, C7, C8 — 5.000 pF, 500 V, disco de cerâmica

Diversos

L1 - Ver texto

L2, L3 - 2,5 mH, 50 mA

L4 - Conforme a frequência de trabalho

tal e coloca-se o núcleo de sintonia e o anel limitador interno.

Esse anel será ajustado cuidadosamente, de forma a permitir a maior penetração do eixo sem que o botão chegue a encostar no bocal da bucha fixadora da bobina, recomendando-se uma folga equivalente a dois fios de rosca. Somente agora é que poderemos apertar em definitivo os parafusos do anel limitador interno, os quais produzirão mossas na rosca do eixo.

Desenrosca-se o eixo o mais que se puder, de tal forma que a sua ponta saliente pela parte externa posterior da caixa exiba um comprimento igual à espessura do anel retentor externo, menos dois fios de rosca equivalentes a duas voltas inteiras da manivela.

Sem mover mais a manivela, vira-se a face da caixa para baixo, quando então o núcleo escorregará sobre o eixo e baterá na parte interna da bucha de fixação da bobina. Com o auxílio de uma ferramenta, gira-se suavemente o núcleo até que, através do furo na base da bobina, apareça o parafuso de fixação daquele e, com a chave Allen, fixa-se o núcleo em definitivo.

Agora daremos duas voltas inteiras da manivela (para dentro) e fixaremos o anel retentor externo, em definitivo, bem apertado contra a placa de encosto. Se tudo estiver com as dimensões e ajustes corretos, deverão ocorrer duas coisas:

1º) O eixo correrá de encosto a encosto, num total de 20 ou mais voltas inteiras da manivela. 2º) Nos extremos do curso, tanto o botão quanto o núcleo não deverão bater, respectivamente, nos lados externo e interno da bucha da bobina, exibindo uma folga de dois fios de rosca.

Estando o conjunto bem alinhado, o eixo girará livremente, e com um simples "tapa" na manivela correrá de ponta a ponta após a lubrificação da bucha e da porca traseira, que será feita com óleo do tipo para máquina de costura.

A última peça a ser colocada após o período de "amaciamento" é a mola de retenção; sua ponta em argola será fixada por meio de um parafuso de 3,175 mm (1/8") com cabeça redonda e preso pelo lado de dentro por meio de uma contra-porca. A ponta livre da mola repousará apenas sobre a ponta de outro parafuso idêntico, aplicado de dentro para fora. Essa mola, que fica sob a placa de encosto, exerce uma pressão moderada, porém constante, sobre o eixo, eliminando qualquer folga do sistema de sintonia.

MONTAGEM ELÉTRICA

O lado "frio" da bobina, junto à face frontal, vai ligado a um terminal de terra aplicado no anel de blindagem da bobina; o lado "quente" desta, juntamente com o fio do conector coaxial, vão ligados à placa "quente" do compensador.

CABO DE LIGAÇÃO

Esse cabo é constituído por um pedaço de cabo coaxial tipo TFS70 da Pirelli ou equi-

-

valente, tendo aplicados em seus extremos dois conectores macho do tipo usado para microfone; o seu comprimento, de solda a solda, deverá ser de 50 cm como mínimo, e de 60 cm como máximo, para que depois da calibração o compensador fique aproximadamente a meio curso.

AJUSTE DA FREQUÊNCIA

Se os componentes tiverem os valores e tolerâncias indicados e as ligações estiverem corretas, assim como as dimensões mecânicas e a fiel execução da bobina, o "encaixe" da cobertura de freqüência será feito pelo compensador de 30 pF da caixa fria.

"BODES" POSSÍVEIS

As maiores possibilidades de "bodes" estão contidas num possível desvio das medidas mecânicas, as quais podem afetar a dimensão elétrica real da bobina ou a capacitância real envolvida na ressonância do circuito sintonizado. Sob o ponto-de-vista elétrico, a solução está no respeito aos valores indicados e no esmero na construção do cabo.

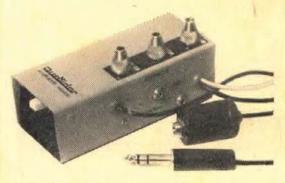
Encaramos a possibilidade dos leitores não encontrarem os capacitores de mica prateada de 510 pF, e nesse caso deverão empregar os de 500 pF, deixando o resto por conta do compensador ("trimmer").

Encaramos também a possibilidade de que, de uma montagem para outra, haja desvios imprevisíveis que impeçam um "encalxe" perfeito da freqüência oferecida; nesse caso podemos adotar medidas corretivas dentro de certos limites.

DESVIO PARA BAIXO

Se a faixa ficou para baixo e, mesmo com C1 todo aberto, não conseguimos encaixá-la, corrigimos a bobina; para isso, solta-se a ligação de terra, desenrola-se o fio do terminal inferior e com cuidado retiramos uma espira por vez, até que C1 comece a entrar um pouquinho para o correto enquadramento. Essa operação requer uma certa habilidade, pois o lugar é meio apertadinho, mas normalmente não deverá ir além de quatro ou, no máximo, cinco espiras.

DESVIO PARA CIMA


Nesse caso, mesmo com C1 todo fechado, não se atinge a freqüência mínima tolerável, mas a correção é "barbada". Como "quebra-galho", instala-se um segundo compensador na saída do cabo junto ao estágio oscilador, sendo este ajustado de forma a deixar o compensador da caixa fria no centro do seu curso.

MELHORE O DESEMPENHO DA SUA ESTAÇÃO!

MINI-COMPRESSOR DE MODULAÇÃO "QUALIDOR"

- Basta intercalá-lo entre o microfone e a estação, para você ganhar 2 pontos S, isto é, 12 dB na sua transmissão.
- Aumento do rendimento geral em todas as faixas, tornando muito mais sensível qualquer microfone.
- Ideal para Radioamadorismo, Faixa do Cidadão, Rádio Patrulha e Radiocomunicações comerciais de todos os tipos (Empresas rodoviárias, navegação aérea, fluvial, marítima, etc.).

MINI-ACOPLADOR HÍBRIDO UNIVERSAL (PHONE-PATCH) "QUALIDOR"

- Cinco funções: Gravação entre Estações, Reprodução de Gravação para o Ar, Gravação entre Estações e Linha Telefônica, Gravação de Conversação Telefônica e Reprodução de Conversações para Linha Telefônica.
- O Microfone, o Receptor, o Transmissor, o Telefone, o Fone e o Gravador são acoplados entre si, em um único aparelho miniaturizado.
- Operação totalmente automática (em razão do sistema híbrido), sem necessidade do "Câmbio" ou comutações.
- Alta qualidade e apurado padrão técnico.
 Ideal em Radioamadorismo e Faixa do Cidadão.

Qualidar

Ind. e Com. Equipamentos Eletrônicos

ALUISIO PIMENTEL DE CAMARGO — Rua Dona Margarida 711 — Fone 2047 — Caixa Postal 72 — Sta. Bárbara D'Oeste — S. Paulo

RADIOAMADORISMO

ARNALDO MEIRELLES PY2FC/PX-2A-0776

Transmissores, receptores, transceivers, SSB-AM-CW, antenas cúbicas, direcionais, dipolos, "phone-patch", lineares, microfones, torres, chaves, comutadores coaxiais de antenas, conectores, enfim, tudo que necessita o radioamador iniciante ou veterano. "Shack" montado para testes. Novos e usados: financiamento até 24 meses.

SUA VISITA SERÁ UM PRAZER

Especialista em 11 metros, Faixa do Cidadão.

Novo local: Av. Rouxinol, 961 Fone: 267-1684 — S. Paulo — Capital

AS LOJAS DO LIVRO ELETRÔNICO OFERECEM OS SEGUINTES TÍTULOS:

(EM INGLÊS)

DOORD BUILD V. A. A.	Cr\$
20050 — Building Your Amateur Radio Novice Station	38,00
20102 — Computer Dictionary	55,00
20184 — Eliminating Engine Interference	28,00
20515 — 99 Ways to Improve Your CB Radio	30,00
20655 — 101 Questions and Answers about CATV and MATV	25,00
20722 — CB Radio Servicing Guide	40,00
20805 - ABC's of Tape Recor-	

LOJAS DO LIVRO ELETRÔNICO

RIO DE JANEIRO SÃO PAULO

Av. Mal. Floriano, 148 Rus Vitoria, 379/363
Reembolso: Gaiza Postal 1131 — ZC-00 — Rio de Janeiro — GB

ding 30,00

Qualquer correção que tenda a exceder os limites apontados para os dois casos denota a presença de incorreções construtivas.

PRESENÇA DA TAMPA

Com a construção adotada, a colocação da tampa não exerce influência sobre a bobina; nota-se apenas ligeira influência de capacitância parasita sobre o lado "quente", porém de natureza estável, e que pode ser descontada na calibração.

O GRITO DO CABO

Sendo o cabo um capacitor que toma parte na formação do divisor de fase, poderá produzir alterações na "nota de batimento", se for "chacoalhado" desnecessariamente; há PY que durante o QSO ficam "massageando" o cabo do microfone. O cabo deve ser instalado seguindo curvas arredondadas, sem torções, e repousando sobre a mesa, quando então ficará "caladinho".

DESEMPENHO

A sensibilidade e precisão do ajuste de frequência e a sua permanência de ajuste, sob o ponto-de-vista mecânico, são indiscutíveis. Sob o ponto-de-vista elétrico, apreciaremos três aspectos.

- 1º) A caixa fria é absolutamente imune a influências térmicas, salvo as variações a longo prazo do clima do "shack", inócuas para operação em 40 e 80 m; é também imune a induções oriundas de outros estágios e à "chuva" de R.F. oriunda da antena.
- 2º) A freqüência é imune à tensão de alimentação de +B, pois esta deverá ser fornecida a partir de um ponto estabilizado por uma VR105 ou equivalente. Se necessário, poderá ser alimentada com 150 V estabilizados, com algum aumento de consumo.
- 3º) A freqüência não é imune a variações da rede que afetem a tensão de calefator. Essa imunidade só poderia ser obtida se o calefator fosse alimentado a partir de um estabilizador magnético, o que poderia ser feito em conjunto com o receptor da estação.

DETALHES DA BOBINA

Sendo esta uma peça de grande responsabilidade, achamos interessante incluir o máximo de informações construtivas. Para isso, fornecemos ao PY1AFA uma bobina avulsa que se pode ver na Foto 3.

A bucha de potenciômetro é aplicada na forma por meio de um disco feito de chapa de alumínio com 1 mm de espessura; esse disco tem um furo central passante de 9,525 mm (3/8") é seu diâmetro externo é ajustado para "vestir" sem folgas no lado interno da forma pousado no "beiço" exis-

tente. Em seguida, a bobina será fixada temporariamente por meio de sua porca em um pedaço de chapa ou um chassi fora de uso. Mantendo a forma de boca para cima, faz-se a fixação da bucha e do disco, pelo lado interno, por meio de uma "inundação" de Araldite sem que extravase pelo furo da bucha.

UM SEPARADOR ADEQUADO

É possível que alguns leitores possam se interessar na aplicação deste O.F.V. no "organismo" de um transmissor a ser construído, digamos, para 80 e 40 metros. Entre a válvula osciladora e o estágio de potência de R.F. devemos utilizar um separador adequado que poderá operar como multiplicador de fregüência.

Na Fig. 3 temos o diagrama de um separador já trabalhado por nós. Para obtenção de máxima saída, o tanque de grade do estágio de potência deve ser sintonizado pelo emprego do maior valor possível de indutância em L4, a qual é sintonizada pelas capacitâncias parasitas das válvulas e C9, de 30 pF, a meio curso.

Numa versão montada por nós com um Mausoléu oscilando em 2,32 MHz e esse separador triplicando para 7 MHz, obtivemos nas grades de duas 6DQ6 uma tensão de -75 V, sobre uma $R_{\rm g}$ de 47 k Ω , o que nos dá uma $I_{\rm g}$ de 1,6 m A, empregando um +B de 105 V no oscilador e no separador.

● (OR 860)

Conhecendo os Colegas

A Rita de Cássia, PY2FAX (esq.), além da "voz de brotinho" é uma excelente seresteira. O Neves, PY4EP, quase chorou de emoção quando a Ritinha cantou "Saudade do Matão"; ela cantou tão bem que todos nós só notamos que tinham tirado o violão depois que vimos a fotografía... (Foto via PY1CC)

AS ANTENAS AO ALCANCE DE TODOS

Explicação prática e acessível sobre as antenas, abrangendo os seguintes assuntos:

- Ondas de rádio e propagação (16 páginas).
- Características básicas das antenas (16 páginas).
- 3. Tipos de antenas (26 páginas).
- Antenas para estações de amadores e emissoras comerciais (20 páginas).
- Antenas para outras modalidades de comunicações (28 páginas).

Um livro prático indispensável aos experimentadores, estudantes de Telecomunicações e os Radioamadores.

Ref. 200 — Lytel — ABC das Antenas — Obra prática sobre os fundamentos das antenas, tipos, características e aplicações. — 2ª ed. — Cr\$ 15,00.

DISTRIBUIDORES EXCLUSIVOS:

L LOJAS DO LIVRO ELETRÔNICO

GB: Av. Mal. Floriano, 148 - 1.º - Rio SP: Rua Vitória, 379/383 - São Paulo Reembolso: C. P. 1131 - ZC - 00 - Rio, GB